ON C_u^* - AND C_u - EMBEDDED UNIFORM SPACES

ASYLBEK CHEKEEV^{1,2}, BAKTIYAR RAKHMANKULOV¹, AIGUL CHANBAEVA¹

ABSTRACT. For a uniform space uX the concept of C_u -embedding (C_u^* -embedding) in some uniform space is introduced. An analogue of Urysohn's Theorem is proved and it is established, that uX is C_u^* -embedded in the Wallman β -like compactification $\beta_u X$, and any compactification of uX in which uX is C_u^* -embedded, must be $\beta_u X$. A uniformly realcompact space is determined. It is proved, that uX is C_u -embedded in the Wallman realcompactification $v_u X$, and any uniform realcompactification in which uX is C_u -embedded, is $v_u X$.

Key words: u-open (closed) sets, z_u -filter, z_u -ultrafilter, coz-mapping, u-continuous function, Wallman β -like compactification, Wallman realcompactification.

AMS Subject Classification: 54C20, 54C45, 54D30, 54D60, 54E15, 54 H13.

1. INTRODUCTION

Extensions of (bounded) continuous and (bounded) uniformly continuous functions from subspaces of topological and uniform spaces to the whole space are the most important and actual problems ([2, 8]). For topological spaces the concepts of C^* -embeddings and C-embeddings of their subspaces, introduced by C. Kohls [13, Notes, Chapter 1] and P. Urysohn, allowed one to prove that to be a normal space is equivalent to that every closed subspace is $C(C^*)$ -embedded in it [13, Notes, Chapter 1], [10, 2.1.8]. M. Stone and E. Čech proved that a completely regular space X is C^* -embedded in its Stone-Čech compactification βX , and any compactification of X in which X is C^* -embedded must be βX [13, Th. 6.5 (II)]. E. Hewitt proved that a completely regular space X is C-embedded in its realcompactification vX, and any realcompactification of X in which X is C-embedded must be vX [13, Th. 8.7 (II)]. M. Katetov [18] proved that any bounded uniformly continuous function on a uniform subspace can be extended on the whole space.

In [8], for a uniform space uX the Wallman β -like compactification $\beta_u X$ and the Wallman realcompactification $v_u X$ have been constructed and their uniformities described. Since $U(uX) \subset C_u(X) \subset C(X)$ and $U^*(uX) \subset C_u^*(uX) \subset C^*(X)$, the concepts of C_u -embedding and (C_u^*-) embedding of a uniform subspaces are naturally determined (Definition 3.2) and analogues of Urysohn's Theorem (Theorem 3.4) and Theorem on C_u -embedding of a C_u^* -embedded subspaces are proved (Theorem 3.5). For the Wallman β -like compactification $\beta_u X$ of a uniform space uX an analogue of Stone-Čech Theorem is proved: a uniform space uX is C_u^* -embedded must be $\beta_u X$ (Theorem 3.7, Corollary 3.5, Theorem 3.8). It is also proved that a unform subspace u'S of the uniform space uX is C_u^* -embedded in uX if and only if

¹Kyrgyz National University, Bishkek, Kyrgyz Republic

² Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic e-mail: asyl.ch.top@mail.ru, rakhmankulov.b@mail.ru, a.chanbaeva@mail.ru Manuscript received Mart 2016.

 $[S]_{\beta_u X} = \beta_{u'} S$ (Proposition 3.3). An example of a uniform space uX which is C_u^* -embedded, but is not C^* -embedded in $\beta_u X$ is given (Remark 3.2).

The concept of uniformly realcompact uniform space is introduced (Definition 4.2), of its some properties are studied and the example of a uniform space uX which is C_u -embedded, but is not C-embedded in the Wallman realcompactification $v_u X$ is provided (Theorem 4.1, Corollary 4.1, Theorem 4.2, Corollary 4.2, Propositions 4.1 and 4.2, Corollaries 4.2 and 4.3). For a realcompactification $v_u X$ of a uniform space uX an analogue of Hewitt Theorem is proved: uXis C_u -embedded in its Wallman realcompactification $v_u X$, and any uniform realcompactification in which uX is C_u -embedded is $v_u X$ (Theorem 4.4, Corollary 4.4, Theorem 4.5).

2. NOTATION AND PRELIMINARIES

All notations and properties of uniform spaces are taken from books [17, 3, 10], a normal bases properties from [11] and constructions using them from books [1, 15, 20], properties of the Stone-Čech compatification and its interrelation with rings of functions from books [13, 23].

For a uniform space uX, where u is the uniformity in terms of uniform coverings, we denote by U(uX) $(U^*(uX))$ the set of all (bounded) uniformly continuous functions on uX. $\mathcal{Z}_u = \{f^{-1}(0) : f \in U(uX)\}$ and, evidently, $\mathcal{Z}_u = \{g^{-1}(0) : g \in U^*(uX)\}$. We note that $U^*(uX)$ is a commutative ring with unit, whereas U(uX), in general, is not so. All sets of \mathcal{Z}_u are said to be u-closed [5, 6] and all sets of $C\mathcal{Z}_u = \{X \setminus Z : Z \in \mathcal{Z}_u\}$ are said to be u-open [3]. When $u = u_f$ is the fine uniformity on a Tychonoff space X, then $U(u_fX) = C(X)(U^*(u_fX) = C^*(X))$ is the set of all (bounded) continuous functions [13, 10]. $\mathcal{Z}_{u_f} = \mathcal{Z}(X)$ is a family of all zero-sets, and $C\mathcal{Z}_{u_f} = C\mathcal{Z}(X)$ is a family of all cozero-sets [13]. A family (covering) α consisting of u-open sets (cozero-sets) is said to be an u-open (a cozero) covering.

 \mathcal{Z}_u is the base of closed sets topology, forms separating, nest-generated intersection ring on X [21], and hence it is a normal base [11, 15].

Definition 2.1. A mapping $f: uX \to vY$ between uniform spaces is said to be a coz-mapping, if $f^{-1}(C\mathcal{Z}_v) \subseteq C\mathcal{Z}_u$ (or $f^{-1}(\mathcal{Z}_v) \subseteq \mathcal{Z}_u$) [5, 6, 12]. A mapping $f: uX \to Y$ from a uniform space uX into a Tychonoff space Y is said to be $z_u-continuous$, if $f^{-1}(C\mathcal{Z}(X)) \subseteq C\mathcal{Z}_u$ (or $f^{-1}(\mathcal{Z}(Y)) \subseteq \mathcal{Z}_u$) [9].

Evidently, every uniformly continuous mapping is a coz-mapping, while the converse, generally speaking, is not true [5, 6, 7]. Also, every z_u -continuous mapping $f : uX \to Y$ is a coz-mapping of $f : uX \to vY$ for any uniformity v on Y. If Y is a Lindelöf space or (Y, ρ) is a metric space, then its coz-mapping is a z_u -continuous (for example, [5, 6]). If $Y = \mathbb{R}$ or Y = I, then the coz-mapping $f : uX \to \mathbb{R}$ is said to be a u-continuous function and the coz-mapping $f : uX \to I$ is said to be a u-function [5, 6].

We denote by $C_u(X)$ $(C_u^*(X))$ the set of all (bounded) *u*-continuous functions on the uniform space uX and by $\mathcal{Z}(uX)$ the ring of zero-sets functions from $C_u(X)$ or $C_u^*(X)$ and $C\mathcal{Z}(uX)$ consists of complements of sets of $\mathcal{Z}(uX)$ and, vice versa.

The topology of a uniform space is generated by its uniformity, and in case of a compactum X we always use its unique uniformity. The restriction of a uniformity from a uniform space vY to its subspace X is denoted $v|_X$ and the restriction of a function f from Y into \mathbb{R} to a subset $X \subset Y$ is denoted $f|_X$. A uniform space uX which has a base of uniform coverings of cardinality $\leq \tau$ is said to be τ -bounded [3, 4].

We denote the set of all natural numbers by \mathbb{N} , \mathbb{R} is the real line, uniformity $u_{\mathbb{R}}$ on \mathbb{R} is induced by the ordinary metric; I = [0, 1] is a unit interval; for $X \subset Y$ and a family of subsets \mathfrak{F} in Y we denote $X \wedge \mathfrak{F} = \{X \cap F : F \in \mathfrak{F}\}$ and by $[X]_Y$ the closure of X in Y. For families of subsets \mathfrak{F} and \mathfrak{F}' we denote $\mathfrak{F} \wedge \mathfrak{F}' = \{F \cap F' : F \in \mathfrak{F}, F' \in \mathfrak{F}'\}$.

A filter \mathcal{F} is called *countably centered* if $\cap_{n \in \mathbb{N}} F_n \neq \emptyset$ for any countable subfamily $\{F_n\}_{n \in \mathbb{N}}$ of the filter \mathcal{F} .

The natural uniformity on uX, generated by $U(uX)(U^*(uX))$, the $u_c(u_p)$ is the smallest uniformity on X with respect to all its functions from $U(uX)(U^*(uX))$ which are uniformly continuous. Evidently, $u_p \subseteq u_c \subseteq u_\omega \subseteq u$, where a base of uniformity u_ω is formed by all countable uniform coverings of u. The Samuel compactification s_uX is a completion of X with respect to the uniformity u_p .

Proposition 2.1. [8] The set \mathcal{B}_p^* (\mathcal{B}_ω^*) of all finite countable *u*-open coverings of a uniform space uX is the base of uniformity $u_p^z(u_\omega^z)$. Moreover $u_p \subseteq u_p^z$, $u_p \subseteq u_c \subseteq u_\omega \subseteq u_\omega^z$.

Proposition 2.2. [8] $C_u(X)$ forms a complete subring of C(X) with the inversion. It contains constant functions, separates points and closed sets, is uniformly closed and is closed under inversion, i.e. if $f \in C_u(X)$ and $f(x) \neq 0$ for all $x \in X$ then $1/f \in C_u(X)$ (an algebra in sense of [14, 16]).

Lemma 2.1. [8]

- (1) coz-mapping $f: uX \to vY$ into a compact space vY is a uniformly continuous mapping $f: u_p^z X \to vY;$
- (1') coz-mapping $f: uX \to vY$ into \aleph_0 -bounded uniform space vY is a uniformly continuous mapping $f: u_{\omega}^z X \to vY$;
- (2) $U(uX) = U(u_cX) = U(u_\omega X) \subset U(u_\omega^z X) = C_u(X);$

(2)
$$U(u_pX) = U^*(uX) \subset U(u_p^zX) = U^*(u_\omega^zX) = C_u^*(X) \subset C_u(X);$$

- (3) $\mathcal{Z}_u = \mathcal{Z}_{u_p} = \mathcal{Z}_{u_c} = \mathcal{Z}_{u_\omega} = \mathcal{Z}_{u_{\omega}^z} = \mathcal{Z}_{u_{\omega}^z} = \mathcal{Z}(uX).$
- (4) $C_u(X)$ is a complete ring of functions with inversion on X.

Let $\omega(X, \mathbb{Z}_u)$ be the Wallman compactification of X with respect to the normal base \mathbb{Z}_u [11, 1, 15].

Theorem 2.1. [8] For a uniform space uX the following compactifications of X coincide:

- (1) The completion of X with respect to u_p^z .
- (2) The Wallman compactification $\omega(X, \mathbb{Z}_u)$ of X with respect to the normal base \mathbb{Z}_u .
- (3) The compactification which is the set of all maximal ideals of $C_u^*(X)$ equipped with the Stone topology [22].

We note that $\omega(X, \mathbb{Z}_u)$ is a β -like compactification of X [19], and we put $\beta_u X = \omega(X, \mathbb{Z}_u)$ Corollary 2.1. [8]

- I. Every coz-mapping $f : uX \to vY$ can be extended to the continuous mapping $\beta_u f : \beta_u X \to \beta_v Y$ [1, 15].
- II. The first axiom of countability does not hold in any point $x \in \beta_u X \setminus X$ [21].
- III. For uniform spaces uX and u'X we have $\beta_u X = \beta_{u'}X$ if and only if $\mathcal{Z}_u = \mathcal{Z}_{u'}$ [21].

Theorem 2.2. [8] For a uniform space uX the following conditions are equivalent:

- (1) The Samuel compactification $s_u X$ of u X is a β -like compactification of X;
- (2) $u_p = u_p^z;$
- (3) any *coz*-mapping $f: uX \to K$ into a compactum K can be extended to s_uX ;
- (4) any *u*-function $f: uX \to I$ into *I* can be extended to s_uX ;
- (5) if $Z_1, Z_2 \in \mathcal{Z}_u$ and $Z_1 \cap Z_2 = \emptyset$, then $[Z_1]_{s_u X} \cap [Z_2]_{s_u X} = \emptyset$;
- (6) $[Z_1]_{s_u X} \cap [Z_2]_{s_u X} = [Z_1 \cap Z_2]_{s_u X}$ is fulfilled for any $Z_1, Z_2 \in \mathcal{Z}_u$;
- (7) every point of $s_u X$ is the limit point for a unique z_u -ultrafilter on uX;

(8) every z_u -ultrafilter is a Cauchy filter with respect to u_p .

Definition 2.2 [21]. The Wallman realcompactification of a uniform space uX is the subspace $v(X, \mathcal{Z}_u) = v_u X \subset \beta_u X$ consisting of the set of all countably centered z_u -ultrafilteres on \mathcal{Z}_u .

- **Theorem 2.3.** [8] For a uniform space uX the following real compactifications of X coincide:
 - (1) the completion of X with respect to u_{ω}^{z} ;
 - (2) the Wallman realcompactification $v_u X = v(X, \mathcal{Z}_u);$
 - (3) the intersection of all cozero-sets in $\beta_u X$ which contain X;
 - (3) the intersection of all cozero-sets in $s_u X$ which contain X;
 - (4) the Q-closure of X in $\beta_u X$;
 - (4') the Q-closure of X in $s_u X$;
 - (5) the weak completion $\mu_{u_{\omega}^z} X$ coincides with the completion of X with respect to u_{ω}^z ;
 - (6) the weak completion $\mu_{u_{\omega}} X$ of X with respect to u_{ω} ;
 - (7) the weak completion $\mu_{u_c} X$ of X with respect to u_c .

Let X^{v} be some realcompactification of X, u^{v}_{ω} be a uniformity on X^{v} whose base consists of all countable cozero-sets coverings, u^{v}_{c} be the smallest uniformity on X^{v} in which all functions from $C(X^{v})$ are uniformly continuous [10, 8.19, 8.1.D, 8.1.I, 8.3.19, 8.3.F], $\mathcal{Z}(C(X^{v}))$ be the ring of zero-sets of functions from $C(X^{v})$ and $\mathcal{Z}_{X^{v}} = X \wedge \mathcal{Z}(C(X^{v}))$.

Theorem 2.4. [8] For a realcompactification X^{v} of X the following conditions are equivalent:

- (1) X^{υ} is the completion of X with respect to $u_{\omega} = u_{\omega}^{\upsilon}|_X$;
- (2) X^{v} is the weak completion $\mu_{u_c} X$ of X with respect to $u_c = u_c^{v}|_X$;
- (3) X^{v} is the Wallman realcompactification $v_{u_{\omega}}(X, \mathcal{Z}_{X^{v}})$ of X with respect to $\mathcal{Z}_{X^{v}}$;
- (4) any $z_{u_{\omega}}$ -continuous mapping $f: u_{\omega}X \to Y$ into a realcompact space Y has $z_{u_{\omega}^{\nu}}$ -continuous extension to X^{ν} ;
- (5) any $z_{u_{\omega}}$ -continuous function $f: u_{\omega}X \to \mathbb{R}$ has $z_{u_{\omega}^{\upsilon}}$ -continuous extension to X^{υ} ;
- (6) for any $\{Z_i\}_{i\in\mathbb{N}}\subset\mathcal{Z}_{X_v}$ such that $\cap_{i\in\mathbb{N}}Z_i=\emptyset$ it follows $\cap_{i\in\mathbb{N}}[Z_i]_{X^v}=\emptyset$;
- (7) $\cap_{i \in \mathbb{N}} [Z_i]_{X^{\upsilon}} = [\cap_{i \in \mathbb{N}} Z_i]_{X^{\upsilon}}$ is fulfilled for any $\{Z_i\}_{i \in \mathbb{N}} \subset \mathcal{Z}_{X_{\upsilon}};$
- (8) each point in X^{v} is the limit of a unique countably centered $z_{u\omega}$ -ultrafilter on X.

For the interrelations of u-closed set filters with the ideals of rings $C_u(X)(C_u^*(X))$ by analogy with Chapter 2 of [13] we introduce the next notions.

Definition 2.3. A nonempty subfamily \mathcal{F} of \mathcal{Z}_u is said to be a z_u -filter on uX provided that (i) $\emptyset \notin \mathcal{F}$; (ii) if $Z_1, Z_2 \in \mathcal{F}$, then $Z_1 \cap Z_2 \in \mathcal{F}$; (iii) if $Z \in \mathcal{F}, Z' \in \mathcal{Z}_u$ and $Z \subset Z'$, then $Z' \in \mathcal{F}$.

A natural mapping $\mathbf{Z} : C_u(X) \to \mathcal{Z}_u$, where for any $f \in C_u(X)$, $\mathbf{Z}(f) = \{x \in X : f(x) = 0\} = f^{-1}(0) \in \mathcal{Z}_u$, is determined.

Theorem 2.5. If I is an ideal of the ring $C_u(X)$, then the family $\mathbf{Z}(I) = {\mathbf{Z}(f) : f \in I}$ is a z_u -filter on uX, and, vice versa, if \mathcal{F} is a z_u -filter on uX, then the family $\mathbf{Z}^{-1}(\mathcal{F}) = {f : \mathbf{Z}(f) \in \mathcal{F}}$ is an ideal in $C_u(X)$.

Proof. It is similar to [13, Th. 2.3].

By a z_u -ultrafilter on uX is meant a maximal z_u -filter, i.e. one not contained in any other z_u -filters.

Theorem 2.6. If I is a maximal ideal of the ring $C_u(X)$, then $\mathcal{Z}(I)$ is a z_u -ultrafilter on uX and if p is a z_u -ultrafilter on uX, then $\mathbf{Z}^{-1}(p)$ is a maximal ideal in $C_u(X)$. The mapping $\mathbf{Z} : C_u(X) \to \mathcal{Z}_u$ is one-to-one from the set of all maximal ideals in $C_u(X)$ onto the set of all z_u -ultrafilters

Proof. It is analogically to [13, Th. 2.5].

Theorem 2.7.

- (a) Let I be a maximal ideal in the ring $C_u(X)$. If $\mathbf{Z}(f)$ meets every member of $\mathbf{Z}(I)$, then $f \in I$.
- (b) Let p be a z_u -ultrafilter on uX. If an u-closed set Z meets every member of p, then $Z \in p$.

Proof. The proof is similar to that of [13, Th. 2.6].

Theorem 2.8. Let I be an ideal in $C_u(X)$ such that if $\mathbf{Z}(f) \in \mathbf{Z}(I)$, then it implies $f \in I$. Then the next statements are equivalent:

- (1) I is prime.
- (2) I contains a prime ideal.
- (3) For all $g, h \in C_u(X)$, if gh = 0, then $g \in I$ or $h \in I$.
- (4) For every $f \in C_u(X)$ there is an *u*-closed set $\mathbf{Z}(f)$ on which f does not change sign.

Proof. Analogically to [13, Th. 2.9].

Theorem 2.9. Every prime ideal in $C_u(X)$ is contained in a unique maximal ideal.

Proof. Similarly to [13, Th. 2.11].

Definition 2.4. Let \mathcal{F} be a z_u -filter. If $Z_1, Z_2 \in \mathcal{Z}_u$ and from $Z_1 \cup Z_2 \in \mathcal{F}$ it follows that either $Z_1 \in \mathcal{F}$ or $Z_2 \in \mathcal{F}$, then \mathcal{F} is said to be a *prime* z_u -filter.

Theorem 2.9.

- (a) If I is a prime ideal in $C_u(X)$, then $\mathbf{Z}(I)$ is a prime z_u -filter.
- (b) If \mathcal{F} is a prime z_u -filter, then $\mathbf{Z}^{-1}(\mathcal{F})$ is a prime z_u -ideal.

Proof. It is analogically to [13, Th. 2.12].

Corollary 2.2. Every prime z_u – filter is contained in a unique z_u –ultrafilter.

Proof. It immediately follows from the Theorems 2.6 and 2.9.

Definition 2.4. Let *I* be any ideal in $C_u(X)$ (or $C_u^*(X)$). If $\cap \mathcal{Z}(I) \neq \emptyset$, then *I* is said to be a *fixed* ideal; otherwise, *I* is said to be a *free* ideal.

Theorem 2.10. The following statements are equivalent:

- (1) uX is a compact uniform space.
- (2) Every ideal in $C_u(X)$ is fixed, i.e. every z_u -filter is fixed
- (2) Every ideal in $C_u^*(X)$ is fixed.
- (3) Every maximal ideal in $C_u(X)$ is fixed, i.e. every z_u -ultrafilter is fixed
- (3) Every maximal ideal in $C_u^*(X)$ is fixed.

Proof. It is analogically to [13, Th. 4.11].

Lemma 2.2. Let $f: uX \to vY$ be a coz- mapping and let \mathcal{F} be a prime z_u -filter on uX. Then $f^{\sharp}(\mathcal{F}) = \{Z \in \mathcal{Z}_v : f^{-1}(Z) \in \mathcal{F}\}$ is a prime z_v -filter on vY.

Proof. It is analogically to [13, Th. 4.12].

177

3. C_u^* – embedding in β – like compactifications

Definition 3.1. Two subsets A and B of uX are said to be u-separated in uX if there exists a u-function $f: uX \to I$ such that f(x) = 0 for all $x \in A$ and f(x) = 1 for all $x \in B$.

Remark 3.1. If $Z_1, Z_2 \in \mathcal{Z}_u$ on uX and $Z_1 \cap Z_2 = \emptyset$, then the function $f(x) = g_1(x)/(g_1(x) + g_2(x))$ is a *u*-function [5, 6], where $g_i : uX \to I$ are uniformly continuous functions, $Z_i = g_i^{-1}(0)$, (i = 1, 2) and $f(Z_1) = \{0\}, f(Z_2) = \{1\}$. Any segment [-r, r] is uniformly homeomorphic to I. Let $h: I \to [-r, r]$ be a uniform homeomorphism such that $h(0) = \{-r\}, h(1) = \{r\}$. Then the function $F: uX \to [-r, r]$, where $F = h \circ f$, is *u*-continuous and $F(Z_1) = \{-r\}, F(Z_2) = \{r\}$.

Theorem 3.1. Two sets in uX are u- separated if and only if they are contained in disjoint u- closed sets. Moreover, u-separated sets have disjoint u-closed neighborhoods.

Proof. Let A and B be u-separated in uX. Then there exists u-function $f : uX \to I$ such that f(x) = 0 for all $x \in A$ and f(x) = 1 for all $x \in B$. The sets $Z_1 = \{x : f(x) \le 1/3\}$ and $Z_2 = \{x : f(x) \ge 2/3\}$ are u-closed neighborhoods of A and B, respectively, and $Z_1 \cap Z_2 = \emptyset$.

Conversely, if $A \subset Z_1$, $B \subset Z_2$, $Z_i \in \mathcal{Z}_u$, i = 1, 2, and $Z_1 \cap Z_2 = \emptyset$, then, according to Remark 3.2, there exists a u-function $f : uX \to I$ such that f(x) = 0 for all $x \in Z_1$ and f(x) = 1 for all $x \in Z_2$. Hence A and B are u-separated in uX.

Corollary 3.1. If A and B are u- separated in uX, then there exist u-closed sets F and Z such that $A \subset X \setminus Z \subset F \subset X \setminus B$.

Proof. Let $f: uX \to I$ be a *u*-function such that f(x) = 0 for all $x \in A$ and f(x) = 1 for all $x \in B$. Put $F = \{x : f(x) \le 1/3\}$ and $Z = \{x : f(x) \ge 1/3\}$. Then F and Z are *u*-closed sets and it is easy to check, that the condition of this corollary is fulfilled.

Corollary 3.2. Every neighborhood of a point in a uniform space uX contains a u-closed-neighborhood of the point.

Proof. Let $x \in X$ be an arbitrary point and $x \in O$ be an arbitrary open neighborhood of the point x. Then $x \notin F = X \setminus O$ and F is a closed set in X. Hence, there exists a uniformly continuous function $f: uX \to I$ such that f(x) = 0 and f(x) = 1 [3, 10, 17]. Every uniformly continuous function is u-continuous, hence, x and F are u-separated and the remaining follows from Corollary 3.4.

Let uX be a uniform space. A point $x \in X$ is said to be a *cluster point* of a z_u -filter \mathcal{F} if every neighborhood of x meets every member of \mathcal{F} . The z_u -filter \mathcal{F} is said to *converge* to the *limit* x if every neighborhood of x contains a member of \mathcal{F} .

Proposition 3.1. A z_u -filter \mathcal{F} converges to x if and only if \mathcal{F} contains the z_u -filter of all u-closed-neighborhoods of x. If x is a cluster point of a z_u -filter \mathcal{F} , then at least one z_u -ultrafilter containing \mathcal{F} converges to x.

Proof. It is analogically to [13, Th.3.16].

Theorem 3.2. Let uX be a uniform space, $x \in X$ and let \mathcal{F} be a prime z_u -filter on uX. The following conditions are equivalent:

- (1) x is a cluster point of \mathcal{F} .
- (2) \mathcal{F} converges to x.
- $(3) \cap \mathcal{F} = \{x\}.$

Proof. It is analogically to [13, Th.3.17].

Theorem 3.3. Let p_x be a family of all *u*-closed sets containing a given point *x* of a uniform space uX. Then

- (a) x is a cluster point of a z_u -filter \mathcal{F} if and only if $\mathcal{F} \subset p_x$.
- (b) p_x is the unique z_u -ultrafilter converging to x.
- (c) Distinct z_u -ultrafilters cannot have a common cluster point.
- (d) If \mathcal{F} is a z_u -filter converging to x, then p_x is the unique z_u -ultrafilter containing \mathcal{F} .

Proof. It immediately follows from 3.5, 3.6, 3.7.

Definition 3.2. Let X be a subspace of a Tychonoff space Y and u be a uniformity on X, v be a uniformity on Y such that $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$. The uniform space uX is said to be $C_u(C_u^*)$ -embedded in the uniform space vY, if any function of $C_u(X)$ $(C_u^*(X))$ can be extended to a function in $C_v(Y)$ $(C_v^*(Y))$.

Theorem 3.4. (Urysohn's Extension Theorem) Let X be a subspace of a Tychonoff space Y, u be a uniformity on X and v be a uniformity on Y such that $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$. Then uX is C_u^* -embedded in vY if and only if any two u-separated sets in X are v-separated in Y.

Proof. Necessity. If A and B are u-separated sets in uX, there exists a function f in $C_u^*(X)$ that is equal to 0 on A and 1 on B. By hypothesis, f has an extension to a function g in $C_v^*(Y)$. Since g is 0 on A and 1 on B, these sets are u-separated sets in vY.

Sufficiency. Let f_1 be a given function in $C_u^*(X)$. Then $|f_1| \leq m$ for some $m \in \mathbb{N}$. Define $r_n = (m/2)(2/3)^n$, $n \in \mathbb{N}$. Then $|f_1| \leq m = 3r_1$. Inductively, given $f_n \in C_u^*(X)$ with $|f_n| \leq 3r_n$, define $A_n = \{x \in X : f_n(x) \leq -r_n\}$ and $B_n = \{x \in X : f_n(x) \geq r_n\}$. Then A_n and B_n are u-closed sets in uX and $A_n \cap B_n = \emptyset$. Then, by Remark 3.1, A_n and B_n are u-separated in uX. Accordingly, there exists a function g_n in $C_v^*(Y)$ equal to $-r_n$ on A_n and $2r_n$ on B_n with $|g_n| \leq r_n$. The values of f_n and g_n on A_n lie between $-3r_n$ and $-r_n$; on B_n , they lie between r_n and $3r_n$; and elsewhere on X they are between $-r_n$ and r_n . Let $f_{n+1} = f_n - g_n|_X$ and we have $|f_{n+1}| \leq 2r_n$, i.e. $|f_{n+1}| \leq 3r_{n+1}$. This completes the induction step.

Now put $g(x) = \sum_{n \in \mathbb{N}} g_n(x), x \in X$. Since the series $\sum_{n \in \mathbb{N}} r_n$ converges uniformly and since $|g_n| \leq r_n$ for all $n \in \mathbb{N}$, it follows that $\sum_{n \in \mathbb{N}} g_n(x)$ converges uniformly and, by Proposition 2.3, g is a bounded v-continuous function, i.e. $g \in C_v^*(Y)$. For every $n \in \mathbb{N}$ we have $(g_1+g_2+\ldots+g_n)|_X = (f_1-f_2)+(f_2-f_3)+\ldots+(f_n-f_{n+1})$, i.e. $(g_1+g_2+\ldots+g_n)|_X = f_1-f_{n+1}$. Since the sequence $\{f_{n+1}(x) : n \in \mathbb{N}\}$ approaches 0 at every x of X, this shows that $g(x) = f_1(x)$ for all $x \in X$. Thus, g is a v-continuous extension of f_1 .

Corollary 3.2. Let uX be a uniform subspace of vY. Then uX is C_u^* -embedded in vY if and only if any two *u*-separated sets in X are *v*-separated in Y.

Proof. It immediately follows from Theorem 3.5, since $u = v|_X$, hence $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$.

Corollary 3.3. Let X be a subspace of a Tychonoff space Y, S be a subspace of X, u be a uniformity on X, v a uniformity on Y and w a uniformity on S such that $\mathcal{Z}_w = \mathcal{Z}_u \wedge S$ both $\mathcal{Z}_u = \mathcal{Z}_v \wedge X$ and uX is $C_u - (C_u^*)$ -embedded in vY. Then wS is $C_w - (C_w^*)$ -embedded in vY if and only if wS is $C_w - (C_w^*)$ -embedded in uX.

Proof. Let wS be $C_w(C_w^*)$ -embedded in vY, i.e. any w-continuous (bounded) function $f \in C_w(X)(C_w^*(X))$ can be extended to v-continuous function $g \in C_v(Y)$ $(C_v^*(Y))$. It is correctly, as $\mathcal{Z}_w = \mathcal{Z}_v \wedge X$. Evidently, $h : g|_X \in C_u(X)$ $(C_u^*(X))$ and h is a u-continuous (bounded) extension of the function f. The converse statement is obvious.

Theorem 2.4. A C_u^* -embedded subset is C_u -embedded if and only if it is *u*-separated from every *u*-closed set disjoint from it.

Proof. Let uX be C_u^* -embedded in vY. Let $\mathbf{Z}(h) = h^{-1}(0)$ be v-closed in Y and $\mathbf{Z}(h) \cap X = \emptyset$. Then $h(x) \neq 0$ for all $x \in X$. Then, by Proposition 2.2, the function f(x) = 1/h(x) is u-continuous for all $x \in X$, i.e. $f \in C_u(X)$. Let g be a u-continuous extension of f on X. Then $g \cdot h$ belongs to $C_v(Y)$ (Proposition 2.2) and equals to 1 on X and 0 on $\mathbf{Z}(h)$.

Conversely, let $f \in C_u(X)$ be an arbitrary function. Then $\operatorname{arctg} \circ f : uX \to (-\pi/2; \pi/2)$ is a *u*-continuous bounded function on uX, i.e. $\operatorname{arctg} \circ f \in C_u^*(X)$. Let g be a *v*-continuous extension of $\operatorname{arctg} \circ f$, i.e. $g \in C_v(Y)$. A set $Z = \{x \in Y : |g(x)| \ge \pi/2\}$ is *v*-closed and $Z \cap X = \emptyset$. By the condition there exists a function $h \in C_v(Y)$ which is equal to 1 on X and 0 on Z, $|h| \le 1$. A function $g \cdot h$ is *v*-continuous, by Proposition 2.3, and $g \cdot h|_X = \operatorname{arctg} \circ f$ and $|(g \cdot h)(x)| < \pi/2$ for all $x \in Y$. Thus, $tg \circ (g \cdot h)$ is a *v*-continuous extension of f on Y. \Box

Definition 3.3. Let uX be a uniform space, and X dense in a Tychonoff space Y. A point $x \in Y$ is a *cluster point* of z_u -filter \mathcal{F} on uX, if every neighborhood of point x in Y meets every member of \mathcal{F} , and x is a *cluster point* of \mathcal{F} provided that $p \in \cap\{[Z]_Y : Z \in \mathcal{F}\}$.

We will say, that z_u -filter \mathcal{F} converges to a limit x, if every neighborhood of point x in Y contains a member of \mathcal{F} .

Lemma 3.1. Let uX be a uniform space, X be dense in a Tychonoff space Y and v be a uniformity on Y such that $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$. If Z is a u-closed set in uX and $x \in [Z]_Y$, then at least one z_u -ultrafilter on uX contains Z and converges to x.

Proof. Let \mathcal{F} be a z_v -filter on vY of all v-closed-set-neighborhoods of x and $\mathcal{F}' = \mathcal{F} \wedge X$. Since $x \in [Z]_Y, \mathcal{F}' \cup \{Z\} \subseteq Z_u$ has the finite intersection property, and so is contained in a z_u -ultrafilter p_x . Clearly p_x converges to x.

Corollary 3.3. Under conditions of Lemma 3.1, every point in Y is the limit of at least one z_u -ultrafilter on uX.

Proof. It immediately follows from Lemma 3.1 under Z = X.

Theorem 3.6. Let uX be a uniform space, X be dense in a Tychonoff space Y, and v be a uniformity on Y such that $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$, and every point of Y be a limit of unique z_u -ultrafilter on uX. Then on a Y there exists a precompact uniformity v_p^z such that $v_p^z|_X = u_p^z$.

Proof. For any point $x \in Y$, p_x is a unique z_u -ultrafilter on uX, converging to x. Let $Z \in \mathcal{Z}_u$ be an arbitrary member. Put $\overline{Z} = \{x \in Y : Z \in p_x\}$.

Lemma 3.2. Under conditions of Theorem 3.6, if $Z \in \mathcal{Z}_u$, then the set $\overline{Z} = \{x \in Y : Z \in p_x\}$ is closed in Y and for any $Z_n \in \mathcal{Z}_u$ (n = 1, 2)(i) $\overline{Z_1 \cup Z_2} = \overline{Z_1} \cup \overline{Z_2}$ and $(ii)\overline{Z_1 \cap Z_2} = \overline{Z_1} \cap \overline{Z_2}$.

Proof. Evidently that $Z \subset \overline{Z}$. From Lemma 3.1 it follows, that if $x \in [Z]_Y$, then $Z \in p_x$ and $x \in \overline{Z}$. Hence $\overline{Z} = [Z]_Y$. The inclusion $\overline{Z_1} \cup \overline{Z_2} \subseteq \overline{Z_1 \cup Z_2}$ is obvious. Let $x \in \overline{Z_1 \cup Z_2}$. Then $Z_1 \cup Z_2 \in p_x$ and p_x is a z_u -ultrafilter on uX, converging to the point x. Since p_x is a prime z_u -filter, then either $Z_1 \in p_x$, or $Z_2 \in p_x$. So, either $x \in \overline{Z_1}$, or $x \in \overline{Z_2}$, i.e. $\overline{Z_1 \cup Z_2} \subseteq \overline{Z_1 \cup Z_2}$ and the item (i) is fulfilled.

For the item (ii) the inclusion $\overline{Z_1 \cap Z_2} \subseteq \overline{Z_1} \cap \overline{Z_2}$ is obvious. Let $x \in \overline{Z_1} \cap \overline{Z_2}$. Then $Z_1 \in p_x$, $Z_2 \in p_x$ and p_x is a z_u -ultrafilter on uX, converging to the point x. So, $Z_1 \cap Z_2 \in p_x$ and $x \in \overline{Z_1 \cap Z_2}$. The item (ii) is fulfilled. Lemma is proved.

We continue the proof of Theorem 3.6.

Let $\alpha = \{U_i : i = 1, ..., n\} \in \mathcal{B}_p^*$ be an arbitrary finite u-open covering of the uniformity u_p^z (Proposition 2.1). Let $Ex_Y U_i = Y \setminus \overline{X \setminus U_i}$ (i = 1, ..., n). Then $Ex_Y U_i$ is open in Y and from the equality (ii) it follows that the family $Ex_Y \alpha = \{Ex_Y U_i : i = 1, ..., n\}$ is an open covering of Y. It is easy to prove, that the finite open covering $\overline{\mathcal{B}}_p^* = \{Ex_Y \alpha : \alpha \in \mathcal{B}_p^*\}$ is a base of precompact uniformity v_p^z . By the construction $Ex_Y \alpha \wedge X = \alpha$, hence $v_p^z|_X = u_p^z$

Corollary 3.4. In the conditions of Theorem 3.6, for the uniformity v_p^z we have $\mathcal{Z}_{v_p^z} \wedge X = \mathcal{Z}_{u_p^z} = \mathcal{Z}_u$.

Proof. It follows from $v_p^z|_X = u_p^z$ and the item (3) of Lemma 2.4.

Theorem 3.7. Let uX be a uniform space, X be dense in a Tychonoff space Y, and v be a uniformity on Y such that $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$. The following statements are equivalent:

- (1) Every coz-mapping f from uX into any compact uniform space νK has an extension to a coz-mapping \hat{f} from vY into νK .
- (2) uX is C_u^* -embedded in vY.
- (3) Any two disjoint u-closed sets in uX have disjoint closures in vY.
- (4) For any two u-closed sets Z_1 and Z_2 in uX,

$$[Z_1 \cap Z_2]_Y = [Z_1]_Y \cap [Z_2]_Y$$
.

- (5) Every point of Y is the limit of a unique z_u -ultrafilter on uX.
- (6) $X \subset Y \subset \beta_u X$.
- (7) $\beta_v Y = \beta_u X.$

Proof. (1) \Rightarrow (2). A *u*-continuous function *f* in $C_u^*(X)$ is a *coz*-mapping into the compact subsets $K = [f(x)]_{\mathbb{R}}$ of \mathbb{R} with respect to the uniformity $v = u_{\mathbb{R}}|_K$. Hence, item (2) is fulfilled. (2) \Rightarrow (3). It follows from Theorem 3.4.

 $(3) \Rightarrow (4)$. If $x \in [Z_1]_Y \cap [Z_2]_Y$, then for every *u*-closed-set-neighborhood *V* of *x* in *Y* we have $x \in [V \cap Z_1]_Y$ and $x \in [V \cap Z_2]_Y$. By (3), it implies $V \cap Z_1 \cap V \cap Z_2 \neq \emptyset$, i.e. $V \cap Z_1 \cap Z_2 \neq \emptyset$. Therefore $x \in [Z_1 \cap Z_2]$. Thus $[Z_1]_Y \cap [Z_2]_Y$ is contained in $[Z_1 \cap Z_2]_Y$. The reverse inclusion is obvious.

 $(4) \Rightarrow (5)$. By Lemma 3.1, each point of Y is the limit of at least one z_u -ultrafilter. Distinct z_u -ultrafilters contain disjoint u-closed sets (Theorem 3.2 (c)) and by (4) it implies that a point x cannot belong to the closures of both these u-closed sets. Hence, the two distinct z_u -ultrafilters cannot both converge to x.

 $(5) \Rightarrow (1)$. Given $x \in Y$, let p_x denote the unique z_u -ultrafilter on uX with the limit x. As in Lemma 2.2, we write $f^{\sharp}(p_x) = \{E \in \mathcal{Z}_{\nu} : f^{-1}(E) \in p_x\}$. This is a prime z_{ν} -filter on a compact uniform space νK , and so it has a cluster point. Therefore, by Theorem 3.2, $f^{\sharp}(p_x)$ has a limit in νK . Denote this limit by $\{y\} = \cap \{f^{\sharp}(\mathcal{F})\}$. It means that it is determined a mapping \hat{f} from vYinto νK . In case $x \in X$, we have $\{x\} = \cap p_x$, so that $y = \hat{f}(x) = f(x) = \cap f^{\sharp}(p_x)$. Therefore \hat{f} agrees with f on X. As $f^{-1}(F) \in \mathcal{Z}_u$ for all ν -closed sets $F \in \mathcal{Z}_{\nu}$, then for a mapping $\hat{f} : Y \to$ νK the equality $\overline{f^{-1}(F)} = \hat{f}^{-1}(F)$ holds for all $F \in \mathcal{Z}_{\nu}$, where $\overline{f^{-1}(F)} = \{x \in Y : f^{-1}(F) \in p_x\}$ (as in the proof of Theorem 3.6). Then for any finite cozero-covering $\beta = \{V_i : i = 1, 2, ..., n\} \in \nu$ of the compact K, the covering $\hat{f}^{-1}(\beta) = \{\hat{f}^{-1}(V_i) : i = 1, 2, ..., n\}$ is an open covering of Y, as, by Theorem 3.6, $\hat{f}^{-1}(V_i) = Y \setminus \overline{f^{-1}(K \setminus V_i)}$ (i = 1, 2, ..., n) and $\hat{f}^{-1}(\beta) \in v_p^z$. Hence $\hat{f} : v_p^z Y \to \nu K$ is a uniformly continuous mapping. By Corollary 3.4, $\mathcal{Z}_{v_p^z} \wedge X = \mathcal{Z}_{u_p^z} = \mathcal{Z}_u$. We note that $\hat{f}^{-1}(F) \in \mathcal{Z}_{u_p^z}$ for any $F \in \mathcal{Z}_{\nu}$. Evidently, $\hat{f}^{-1}(F) \cap X = \overline{f^{-1}(F)} \cap X = f^{-1}(F)$ and $f^{-1}(F) \in \mathcal{Z}_v \wedge X$. Then there exist ν -closed sets $Z_n \in \mathcal{Z}_v$ $(n \in \mathbb{N})$ such that $Int(Z_n) \neq \emptyset$ and $f^{-1}(F) = \bigcap_{n \in \mathbb{N}} \{Z_n \cap X\}$. We have $\hat{f}^{-1}(F) = \overline{f^{-1}(F)} = \overline{\bigcap_{n \in \mathbb{N}} \{Z_n \cap X\}} = \bigcap_{n \in \mathbb{N}} Z_n$ (it follows from the proof of Theorem 3.6). Thus, $\hat{f}^{-1}(F)$ is v-closed set, i.e. the mapping $\hat{f} : vY \to \nu K$ is v-continuous.

 $(5) \Rightarrow (7)$. By Theorem 3.6, a completion of Y, with respect to the uniformity v_p^z , is the Samuel compactification $s_{v_p^z}Y$ of the uniform space $v_p^z Y$ and $v_p^z|_X = u_p^z$. Since X is dense in Y, then $s_{v_p^z}Y = \beta_u X$. From (7) of Theorem 2.2 and (5) it follows that each point of the compactification $s_{v_p^z}Y$ is the limit of a unique z_u -ultrafilter on uX, hence by Corollary 3.4, each point of $s_{v_p^z}Y$ is the limit of a unique z_v -ultrafilter on vY. So, by (7) of Theorem 2.2, we have $s_{v_p^z}Y = \beta_v Y = \beta_u X$.

(7) \Rightarrow (6). $X \subset Y \subset \beta_v Y = \beta_u X$.

(6) \Rightarrow (2). The uniform space uX is C_u^* -embedded in the compactification $\beta_u X$. By (1) of Theorem 2.1, (2) of Theorem 2.2, Theorem 3.6 and Corollary 3.2, it follows, that uX is C_u^* -embedded in the uniform space vY.

Corollary 3.5. Let uX be a dense uniform subspace of the uniform space vY. The following statements are equivalent:

- (1) Every coz-mapping f from uX into any compact uniform space νK has an extension to a coz-mapping \hat{f} from vY into νK .
- (2) uX is C_u^* -embedded in vY.
- (3) Any two disjoint u-closed sets in uX have disjoint closures in vY.
- (4) For any two u-closed sets Z_1 and Z_2 in uX,

$$[Z_1 \cap Z_2]_Y = [Z_1]_Y \cap [Z_2]_Y$$

- (5) Every point of Y is the limit of a unique z_u -ultrafilter on uX.
- (6) $X \subset Y \subset \beta_u X$.
- (7) $\beta_v Y = \beta_u X.$

Proof. It immediately follows from Theorem 3.7, since $u = v|_X$, hence $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$.

Theorem 3.8. Every uniform space uX has a β -like compactification $\beta_u X$ with the next equivalent properties:

- (I) Every coz-mapping f from uX into any compact space νK has a continuous extension $\beta_u f$ from $\beta_u X$ into K.
- (II) uX is C_u^* -embedded in $\beta_u X$.
- (III) Any two disjoint *u*-closed sets in uX have disjoint closures in $\beta_u X$.
- (IV) For any two u-closed sets Z_1 and Z_2 in uX,

$$[Z_1 \cap Z_2]_{\beta_u X} = [Z_1]_{\beta_u X} \cap [Z_2]_{\beta_u X} .$$

(V) Distinct z_u -ultrafilters on uX have distinct limits in $\beta_u X$.

The compactification $\beta_u X$ is unique in the following sense: if a compactification Y of uX satisfies any of listed conditions, then there exists a homeomorphism of $\beta_u X$ onto Y that leaves X pointwise fixed.

Proof. By Theorem 3.7, if a compactification Y satisfies any of (I) - (IV), it satisfies all of them. By (I), the identity mapping on uX (which is a coz-mapping into the compact uniform space vY) has a β -like extension from $\beta_u X$ into vY; similarly, it has an extension from vY into $\beta_u X$ (by Corollary 2.1). It follows that these extensions are homeomorphisms onto [10, 2.1.9, 3.5.4].

Proposition 3.2. The next statements are equivalent:

- (a) In a uniform space uX any two disjoint closed sets, one of which is compact, are u-separated.
- (b) In a uniform space uX every G_{δ} -set containing a compact set K, contains a u-closed set containing K.
- (c) Every compact uniform subspace νK of a uniform space uX is C_{ν} -embedded.

Proof. (a) Let F and F' be disjoint closed sets in uX with F is compact. For each $x \in F$, choose disjoint u-closed sets Z_x and Z'_x , with Z_x is a u-closed-sets-neighborhood of x and $Z'_x \supset F'$. The covering $\{Z_x : x \in F\}$ of the compact set F has a finite subcovering $\{Z_{x_1}, ..., Z_{x_n}\}$. Then F and F' are contained in the disjoint u-closed sets $Z_{x_1} \cup ... \cup Z_{x_n}$ and $Z'_{x_1} \cap ... \cap Z'_{x_n}$, respectively. Hence, by Theorem 3.1, F and F' are u-separated.

(b) A G_{δ} -set G has the form $\cap_{n \in \mathbb{N}} U_n$, where each U_n is open in uX. If $G \supset K$, then K is u-separated from $X \setminus U_n$, by item (a), and so, by Corollary 3.1, there is a u-closed set F_n satisfying $K \subset F_n \subset U_n$. Then $K \subset \cap_{n \in \mathbb{N}} F_n \subset G$ and $\cap_{n \in \mathbb{N}} F_n$, as a countable intersection of u-closed sets is a u-closed set.

(c) Let νK be a compact uniform subspace of a uniform space uX. If F and F' are ν -separated in νK , then F and F' have disjoint closures in K. As these closures are compact, they are, by (a), u-separated in uX. By Theorem 3.4, compact νK is C_{ν}^{*} -embedded in uX. By (b), the compact set K is u-separated from every u-closed set disjoint from it. Hence the compact uniform subspace νK is C_{ν} -embedded in uX.

Proposition 3.3. Let u'S be a uniform subspace of uX. Then

- (a) u'S is $C_{u'}^*$ -embedded in uX if and only if it is $C_{u'}^*$ -embedded in $\beta_u X$.
- (b) u'S is $C_{u'}^*$ -embedded in uX if and only if $[S]_{\beta_u X} = \beta_{u'}S$.

Proof. (a) It is obvious.

(b) By (c) of Proposition 3.2, the compact uniform subspace $K = [S]_{\beta_u X}$ of the compactum $\beta_u X$ is C^*_{ν} -embedded in $\beta_u X$, where ν is a uniformity on K, induced by the unique uniformity of the compactification $\beta_u X$. So, the conditions of (b) hold if and only if the uniform space u'S is $C^*_{u'}$ -embedded in $\beta_{u'}S$ and the compactum $K = [S]_{\beta_u X}$ satisfies (2) of Theorem 3.7 and is a compactification of u'S, in which u'S is $C^*_{u'}$ -embedded.

Remark 3.2. In [8] there is an example of a uniform space uX such that $\beta_u X \neq \beta X$. Then uX is C_u^* -embedded, but it is not C^* -embedded in the compactification $\beta_u X$, because if uX is C^* -embedded in $\beta_u X$, then $\beta_u X = \beta X$. A contradiction.

4. C_u – EMBEDDING IN REALCOMPACTIFICATIONS

Definition 4.1. [12] A mapping $f: uX \to vY$ is said to be a *coz-homeomorphism*, if f is a *coz*-mapping of uX onto vY in a one-to-one way, and the inverse mapping $f^{-1}: vY \to uX$ is a *coz*-mapping. A two uniform spaces uX and vY are *coz-homeomorphic* if there exists a *coz*-homeomorphism of uX onto vY.

Definition 4.2. A uniform space uX is said to be *uniformly realcompact* if it is coz-homeomorphic to a closed uniform subspace of a power of \mathbb{R} .

Remark 4.1. By analogue with [13], an ideal $I \subset C_u(X)$ is said to be a *fixed*, if $\cap \mathbf{Z}(I) = \cap \{\mathbf{Z}(f) : f \in I\} \neq \emptyset$, and if $\mathbf{Z}(I)$ is a countably centered z_u -ultrafilter, then a maximal ideal I is said to be a *real* ideal.

Theorem 4.1. For uniform space uX the following conditions are equivalent:

(1) uX is uniformly realcompact;

- (2) X is complete with respect to the uniformity u_{ω}^{z} ;
- (3) $uX = v_u X;$
- (4) each countably centered z_u -ultrafilter is convergent;
- (5) each point in X is the limit of a unique countably centered z_u -ultrafilter on uX.
- (6) every real maximal ideal in $C_u(X)$ is fixed.

Proof. (1) \Rightarrow (2) Let $i: uX \to \mathbb{R}^{\tau}$ be a coz-homeomorphism of the uniform space uX onto a closed uniform subspace $X' = i(X) \subset \mathbb{R}^{\tau}$ with the uniformity $u' = u_{\mathbb{R}}^{\tau}|_{i(X)}$, where $\mathbb{R}^{\tau}(u_{\mathbb{R}}^{\tau})$ is a power of $\mathbb{R}(u_{\mathbb{R}})$. The uniform space $u_{\mathbb{R}}^{\tau}\mathbb{R}^{\tau}$ is \aleph_0 -bounded and complete [3], hence u'X'is also \aleph_0 -bounded and complete [3]. Then X' is complete with respect to the uniformity $u_{\omega}'^z$ (Proposition 2.1). From (1') of Lemma 2.1 it follows that the uniform spaces $u_{\omega}^z X$ and $u_{\omega}'^z X'$ are uniformly homeomorphic, so X is complete with respect to the uniformity u_{ω}^z (Proposition 2.1).

- $(2) \Leftrightarrow (3)$ It follows from items (1), (2) of Theorem 2.3.
- $(3) \Leftrightarrow (4) \Leftrightarrow (5)$. It follows from items (1), (8) of Theorem 2.4.
- $(5) \Leftrightarrow (6)$. It is obvious (Remark 4.1).

(2) \Rightarrow (1). Let $|C_u(X)| = \tau$. By Lemma 2.1 (2), $C_u(X) = U(u_\omega^z X)$, hence the uniform space $u_\omega^z X$ is uniformly homeomorphically embedded into \mathbb{R}^{τ} , i.e. the uniform space uX is *coz*-homeomorphically embedded into \mathbb{R}^{τ} . From (2) it follows that uX is *coz*-homeomorphic to a closed uniform subspace of $u_{\mathbb{R}}^{\tau} \mathbb{R}^{\tau}$.

Lemma 4.1. [21] If $p \subset \mathcal{Z}(X)$ is a filter closed under countable intersections and $\cap p = \emptyset$, then on a Tychonoff space X there exists a closed set base, which is separating, nest-generated intersection ring and there exists a uniformity u such, that $p \in v_u X$.

Proof. [21, Lemma 3.5]. We put $\mathcal{F} = \{Z \in \mathcal{Z}(X) : Z \in p \text{ or } Z \cap P = \emptyset \text{ for some } P \in p\}$. Then \mathcal{F} is separating, nest-generated intersection ring and the Wallman compactification $\omega(X, \mathcal{F})$ is a β -like [21] compactification. All countable coverings from the family $C\mathcal{F} = \{X \setminus Z : Z \in \mathcal{F}\}$ are the uniformity u on X. Therefore $\omega(X, \mathcal{F}) = \beta_u X$, $v(X, \mathcal{F}) = v_u X$ and p is a free countably centered z_u -ultrafilter on the uniform space uX, i.e. $p \in v_u X$.

Corollary 4.1. If X is a realcompact and non-Lindelöf space, then there exists a uniformity u on X such that uX is not uniformly realcompact. The uniform space uX is C_u -embedded, but it is not C-embedded in v_uX .

Proof. If X is realcompact and non-Lindelöf, then there is a filter $p \subset \mathcal{Z}(X)$, which is closed under countable intersections, and $\cap p = \emptyset$ [10, 3.8.3]. By Lemma 4.1, on X there exists a uniformity u such, that $X \neq v_u X$, i.e. the uniform space uX is not uniformly realcompact. Evidently, uX is C_u -embedded in $v_u X$. If uX is C-embedded in $v_u X$, then $vX = X = v_u X$, but $X \neq v_u X$, and we have a contradiction.

The next theorem characterizes the Tychonoff Lindelöf spaces by means of uniform structures. **Theorem 4.2.** A Tychonoff space X is Lindelöf if and only if uX is uniformly realcompact for any uniformity u on X.

Proof. If a Tychonoff space X is Lindelöf, then evidently uX is uniformly realcompact ([10, 3.8.3], item (2) of Theorem 4.1).

Let uX be uniformly realcompact for any uniformity u on X. Suppose that X is a non-Lindelöf space. Then on X there is a countably centered z-filter $p \subset \mathcal{Z}(X)$ such that $\cap p = \emptyset$ [10, 3.8.3]. Then, by Lemma 4.1, there exists a uniformity u on X such that $X \neq v_u X$, i.e. the uniform space uX is not uniformly realcompact. A contradiction.

Corollary 4.2. Every open uniform subspace of the \aleph_0 -bounded metrizable uniform space is uniformly realcompact.

Proof. Every \aleph_0 -bounded metrizable uniform space possesses a countable base [3]. Hence it is hereditary Lindelöf, i.e. any open subspace is Lindelöf [10, 3.8.A] and it is uniformly realcompact with respect to each uniformity on it.

Proposition 4.1. A closed uniform subspace of a uniformly realcompact space is uniformly realcompact.

Proof. Let vY be a closed uniform subspace of the uniformly realcompact space uX, where $v = u|_Y$. A space X is complete under the uniformity u_{ω}^z (Proposition 2.1 and item (2) of Theorem 4.4), hence vY is complete with respect to the uniformity $u_{\omega}^z|_X$. As $u_{\omega}^z|_X \subset v_{\omega}^z$ (Proposition 2.1), vY is complete with respect to the uniformity v_{ω}^z and the uniform space vY is uniformly realcompact.

Proposition 4.2. A product of any collection of uniformly realcompact spaces is uniformly realcompact if and only if every factor is uniformly realcompact.

Proof. Let $\{u_t X_t : t \in T\}$ be an arbitrary collection of the uniformly realcompact spaces, i.e. $u_t X_t$ is complete under the uniformity $u_{t,\omega}^z$ (Proposition 2.1) for any $t \in T$. Let $X = \prod \{X_t : t \in T\}$, $u = \prod \{u_t : t \in T\}$ and $v = \prod \{u_{t,\omega}^z : t \in T\}$. Then the uniform space uX is complete with respect to the uniformity v. Evidently, $v \subset u_{\omega}^z$ (Proposition 2.1). So, uX is complete with respect to the uniformity u_{ω}^z and uX is a uniformly realcompact space.

The proof of the second part follows from Proposition 4.9.

From Propositions 4.1. and 4.2. the next statement immediately follows.

Corollary 4.2. A limit of an inverse system consisting of uniformly realcompact spaces and "short" projections, being *coz*-mappings, is uniformly realcompact.

Corollary 4.3. Let $\{u_t X_t : t \in T\}$ be a collection of uniformly realcompact uniform subspaces of the uniformly realcompact space uX, i.e. $u_t = u|_{X_t}$ for any $t \in T$. Then the intersection $\cap \{X_t : t \in T\} = Y$, equipped by the uniformity $v = u|_Y$, is uniformly realcompact.

Proof. Let $X' = \prod\{X_t : t \in T\}$ and $u' = \prod\{u_t : t \in T\}$. Then the uniform space u'X' is uniformly realcompact (by Proposition 4.2) and it is a uniform subspace of $u^T X^T$, where T is a power of uX. The diagonal Δ of the power X^T is a closed subspace. Evidently, the uniform space vY is uniformly homeomorphic to the closed in X' uniform subspace $\Delta \cap X'$, equipped by the uniformity $u'|_{\Delta \cap X'}$, which is uniformly realcompact (by Proposition 4.1). \Box

Theorem 4.3. Let uX be a uniform space, X be dense in a Tychonoff space Y, and v be a uniformity on Y such that $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$, and every point of Y be a limit of a unique countably centered z_u -ultrafilter on uX. Then there exists a \aleph_0 -bounded uniformity v_{ω}^z on Y such that $v_{\omega}^z|_X = u_{\omega}^z$

Proof. For any point $x \in Y$, p_x is a unique countably centered z_u -ultrafilter on uX, converging to the point x. Let $Z \in \mathcal{Z}_u$ be an arbitrary member.

Lemma 4.2. In the conditions of Theorem 4.3, if $Z \in \mathcal{Z}_u$, then the set $\overline{Z} = \{x \in Y : Z \in p_x\}$ is closed in Y and for any collection of u-closed sets $\{Z_n\}_{n \in \mathbb{N}}$ in uXthe equality $\overline{\bigcap_{n \in \mathbb{N}} Z_n} = \bigcap_{n \in \mathbb{N}} \overline{Z_n}$ is fulfilled.

Proof. From Lemma 3.1, it follows that if $x \in [Z]_Y$, then $Z \in p_x$ and $x \in \overline{Z}$, i.e. $[Z]_Y \subseteq \overline{Z}$. On the other hand, $\overline{Z} \subseteq [Z]_Y$, which means $\overline{Z} = [Z]_Y$. It is clear, that $\overline{\bigcap_{n \in \mathbb{N}} Z_n} \subseteq \bigcap_{n \in \mathbb{N}} \overline{Z_n}$. Then

 $x \in \bigcap_{n \in \mathbb{N}} \overline{Z_n}$, i.e. $x \in \overline{Z_n}$ for all $n \in \mathbb{N}$. Then $Z_n \in p_x$ for all $n \in \mathbb{N}$ and p_x is a countably centered z_u -ultrafilter on uX. Therefore $\bigcap_{n \in \mathbb{N}} Z_n$ is u-closed and $\bigcap_{n \in \mathbb{N}} Z_n \in p_x$, i.e. $x \in \overline{\bigcap_{n \in \mathbb{N}} Z_n}$. So, $\bigcap_{n \in \mathbb{N}} \overline{Z_n} \subseteq \overline{\bigcap_{n \in \mathbb{N}} Z_n}$. The lemma is proved.

We continue the proof of Theorem 4.3.

Let $\alpha = \{U_i\}_{i \in \mathbb{N}} \in \mathcal{B}^*_{\omega}$ be an arbitrary countable *u*-open covering of the uniformity u^z_{ω} (Proposition 2.2).

Let $Ex_Y U_i = Y \setminus \overline{X \setminus U_i}$ $(i \in \mathbb{N})$. Then $Ex_Y U_i$ is open in Y and from the equality (ii) it follows, that the family $Ex_Y \alpha = \{Ex_Y U_i\}_{i \in \mathbb{N}}$ is an open covering of Y. It is easy to check, that the collection $\hat{\mathcal{B}}^*_{\omega} = \{Ex_Y \alpha : \alpha \in \mathcal{B}^*_{\omega}\}$ of countable open coverings is a base of \aleph_0 -bounded uniformity v^z_{ω} . By the construction $Ex_Y \alpha \wedge X = \alpha$, hence, $v^z_{\omega}|_X = u^z_{\omega}$.

Corollary 4.3. In the conditions of Theorem 4.3, for the uniformity v_{ω}^z we have $\mathcal{Z}_{v_{\omega}^z} \wedge X = \mathcal{Z}_{u_{\omega}^z} = \mathcal{Z}_u$.

Proof. It follows from $v_{\omega}^{z}|_{X} = u_{\omega}^{z}$ and the item (3) of Lemma 2.1.

Theorem 4.4. Let uX be a uniform space, X be dense in a Tychonoff space Y, and v be a uniformity on Y such that $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$. The following statements are equivalent:

(1) Every coz-mapping f from uX into any uniformly realcompact uniform space νR has a coz-extension to a coz-mapping \hat{f} from vY into νR .

- (2) uX is C_u -embedded in vY.
- (3) If a countable u-closed sets family in uX has empty intersection, then their closures in vY have empty intersection.
- (4) For any countable family of u-closed sets $\{Z_n\}_{n\in\mathbb{N}}$ in uX,

$$[\cap_{n\in\mathbb{N}}Z_n]_Y=\cap_{n\in\mathbb{N}}[Z_n]_Y.$$

- (5) Every point of vY is the limit of a unique countably centered z_u -ultrafilter on uX.
- (6) $X \subset Y \subset v_u X$.
- (7) $v_v Y = v_u X$.

Proof. (1) \Rightarrow (2) It is obvious, as $u_{\mathbb{R}}\mathbb{R}$ is uniformly realcompact.

(2) \Rightarrow (3) Let $\bigcap_{n \in \mathbb{N}} Z_n = \emptyset$ and $Z_n \in \mathbb{Z}_u$, $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, $Z_n = f_n^{-1}(0)$, $f_n \in C_u(X)$. Because uX is dense and C_u -embedded in vY, then the functions f_n uniquely can be extended to a functions $\hat{f}_n \in C_v(Y)$, $n \in \mathbb{N}$. Evidently, $[Z_n] \subseteq \hat{f}_n^{-1}(0)$. We show that the family $\hat{\alpha} = \{Y \setminus \hat{f}_n^{-1}(0) : n \in \mathbb{N}\}$ is a covering of Y. Then the family $\alpha = \{Y \setminus [Z_n]_{n \in \mathbb{N}}\}$, a fortiori, will be a covering of Y. Suppose, that $y \in Y \setminus \cup \hat{\alpha}$, i.e. $y \in \bigcap_{n \in \mathbb{N}} \hat{f}_n^{-1}(0)$. Let p_y be a countably centered z_v -ultrafilter such that $\bigcap p_y = \{y\}$. Then $\hat{f}_n^{-1}(0) \in p_y$ and $p_y \wedge X$ is a countably centered u-closed sets family. As X is dense in Y, $p_y \wedge X \neq \emptyset$. Let p be a countably centered z_u -ultrafilter containing $p_y \wedge X$. Then $\hat{f}_n^{-1}(0) \cap X = \mathcal{Z}_u \in p, n \in \mathbb{N}$ and hence $\bigcap_{n \in \mathbb{N}} Z_n \neq \emptyset$. Contradiction. Otherwise, the family α is a covering of Y, therefore, $\bigcap_{n \in \mathbb{N}} [Z_n] = \emptyset$.

 $(3) \Rightarrow (4) \ [\bigcap_{n \in \mathbb{N}} Z_n]_Y \subseteq \bigcap_{n \in \mathbb{N}} [Z_n]_Y \text{ is obvious. Conversely, let } x \in \bigcap_{n \in \mathbb{N}} [Z_n]_Y. \text{ Then for any } v-\text{closed neighborhood of } x \text{ we have } x \in [V \cap Z_n]_Y, n \in \mathbb{N} \text{ and } x \in \bigcap_{n \in \mathbb{N}} [V \cap Z_n]_Y. \text{ By } (3) \text{ we have } \bigcap_{n \in \mathbb{N}} (V \cap Z_n) \neq \emptyset, \text{ i.e. } V \cap (\bigcap_{n \in \mathbb{N}} Z_n) \neq \emptyset. \text{ So, } x \in [\bigcap_{n \in \mathbb{N}} Z_n], \text{ and } (4) (\bigcap_{n \in \mathbb{N}} Z_n) \text{ holds.}$

 $(4) \Rightarrow (5)$ It is obvious.

 $(5) \Rightarrow (1)$ Let $x \in Y$. Let p_x denote the unique countably centered z_u -ultrafilter on uX with limit x. As in Lemma 2.2, we write $f^{\sharp}(p_x) = \{E \in \mathcal{Z}_{\nu} : f^{-1}(E) \in p_x\}$. This is a countably centered prime z_{ν} -filter on the uniformly realcompact space νR . Then, by Corollary 2.2, $f^{\sharp}(p_x)$ is contained in the unique countably centered z_{ν} -ultrafilter p^x . So, by Theorem 3.2, $f^{\sharp}(p_x)$ and p^x are converging to the same limit. Denote this limit by $\{y\} = \cap p^x = f^{\sharp}(p_x)$.

It means that determines a mapping \tilde{f} from vY into νR . In case $x \in X$, we have $\{x\} = \cap p_x$, so that $y = \tilde{f}(x) = f(x) = \cap f^{\sharp}(p_x)$. Therefore \tilde{f} agrees with f on X. As $f^{-1}(F) \in \mathcal{Z}_u$ for all $F \in \mathcal{Z}_\nu$, then for a mapping $\tilde{f} : Y \to \nu R$ the equality $\overline{f^{-1}(F)} = \tilde{f}^{-1}(F)$ is fulfilled for every $F \in \mathcal{Z}_\nu$, where $\overline{f^{-1}(F)} = \{x \in Y : f^{-1}(F) \in p_x\}$ (as in the proof of Theorem 3.6). Then for any countable ν -open covering $\beta = \{U_i\}_{i\in\mathbb{N}} \in \nu_{\omega}^z$ of the uniformly real compact νR the covering $\hat{f}^{-1}(\beta) = \{\hat{f}^{-1}(U_i)\}_{i\in\mathbb{N}}$ is open covering of Y, as, by the Theorem 4.3, $\tilde{f}^{-1}(U_i) = Y \setminus \overline{f^{-1}(R \setminus U_i)}$ $(i \in \mathbb{N})$ and $\tilde{f}^{-1}(\beta) \in v_{\omega}^z$. Hence $\hat{f} : v_{\omega}^z Y \to \nu R$ is uniformly continuous mapping. By Corollary 3.4, $\mathcal{Z}_{v_{\omega}^z} \wedge X = \mathcal{Z}_{u_{\omega}^z} = \mathcal{Z}_u$. We note that $\tilde{f}^{-1}(F) \in \mathcal{Z}_{u_{\omega}^z}$ for any $F \in \mathcal{Z}_\nu$. Evidently, $\tilde{f}^{-1}(F) \cap X = \overline{f^{-1}(F)} \cap X = f^{-1}(F)$ and $f^{-1}(F) \in \mathcal{Z}_v \wedge X$. Then there exist v-closed sets $Z_n \in \mathcal{Z}_v$ $(n \in \mathbb{N})$ such that $Int(Z_n) \neq \emptyset$ and $f^{-1}(F) = \cap_{n \in \mathbb{N}} \{Z_n \cap X\}$. We have $\tilde{f}^{-1}(F) = \overline{f^{-1}(F)} = \bigcap_{n \in \mathbb{N}} \{Z_n \cap X\} = \bigcap_{n \in \mathbb{N}} \mathbb{Z}_n$ (it follows from Theorem 4.3). Thus, $\tilde{f}^{-1}(F)$ is a v-closed set, i.e. the mapping $\tilde{f} : vY \to \nu R$ is v-continuous.

 $(5) \Rightarrow (7)$ By Theorem 4.3, a completion $\tilde{v}_{\omega}^{z}\tilde{Y}$ of the space Y, with respect to the uniformity v_{ω}^{z} , coincides with the Wallman realcompactification $v_{u}X$. From the items (1), (5) of Theorem 2.3 and item (8) of Theorem 2.4, it follows that each point of $\tilde{v}_{\omega}^{z}\tilde{Y}$ is the limit of a unique countably centered z_{u} -ultrafilter on uX, hence, by Corollary 4.3, each point of $\tilde{v}_{\omega}^{z}\tilde{Y}$ is the limit of a unique countably centered z_{v} -ultrafilter on vY. By the item (8) of Theorem 2.104, we have $\tilde{v}_{\omega}^{z}\tilde{Y} = v_{v}Y = v_{u}X$.

 $(7) \Rightarrow (6) \ X \subset Y \subset v_v Y = v_u X.$

(6) \Rightarrow (2) The uniform space uX is C_u -embedded in the Wallman realcompactification v_uX . By the item (1) of Theorem 2.3, item (5) of Theorem 2.4, Theorem 4.3 and Corollary 3.2, it follows that uX is C_u -embedded in the uniform space vY.

Corollary 4.4. Let uX be a dense uniform subspace of a uniform space vY. The following statements are equivalent:

- (1) Every coz-mapping f from uX into any uniformly realcompact uniform space νR has a coz-extension to a coz-mapping \hat{f} from vY into νR .
- (2) uX is C_u -embedded in vY.
- (3) If a countable u-closed sets family in uX has empty intersection, then their closures in vY have empty intersection.
- (4) For any countable family of u-closed sets $\{Z_n\}_{n \in \mathbb{N}}$ in uX,

$$[\cap_{n\in\mathbb{N}}Z_n]_Y = \cap_{n\in\mathbb{N}}[Z_n]_Y.$$

- (5) Every point of vY is the limit of a unique countably centered z_u -ultrafilter on uX.
- (6) $X \subset Y \subset v_u X$.
- (7) $v_v Y = v_u X$.

Proof. It immediately follows from Theorem 4.4, since $u = v|_X$, hence $\mathcal{Z}_v \wedge X = \mathcal{Z}_u$.

Theorem 4.5. Every uniform space uX has the Wallman realcompactification v_uX , contained in a β -like compactification β_uX with the next equivalent properties:

- (I) Every coz-mapping f from uX into any uniformly realcompact space νR has a continuous coz-extension \tilde{f} from $v_u X$ into vY.
- (II) uX is C_u -embedded in v_uX .
- (III) If a countable family of u-closed sets in uX has empty intersection, then their closures in $v_u X$ have empty intersection.
- (IV) For any countable family of u-closed sets $\{Z_n\}_{n\in\mathbb{N}}$ in uX,

$$\bigcap_{n\in\mathbb{N}}[Z_n]_{v_uX} = [\bigcap_{n\in\mathbb{N}}Z_n]_{v_uX} \; .$$

(V) Every point of $v_u X$ is the limit of a unique countably centered z_u -ultrafilter.

The Wallman realcompactification $v_u X$ is unique in the following sense: if a uniform space vY is a realcompactification of uX satisfies any one of listed conditions, then there exists a coz-homeomorphism of $v_u X$ onto vY that leaves X pointwise fixed.

Proof. It is analogically to Theorem 3.8, for the case β -like compactification $\beta_u X$.

5. Acknowledgments

The authors thank the referee for a number of helpful suggestions.

References

- [1] Aarts, J.M., Nishiura, T., (1993), Dimension and Extensions, North-Holland, 331 p.
- [2] Alo, A. R., Shapiro, H.L., (1974), Normal Topological Spaces, Cambridge University Press, 306 p.
- [3] Borubaev, A.A., Chekeev, A.A., Pankov, P.S., (2003), Spaces Uniformed by Coverings, Budapest, 168 p.
- [4] Borubaev, A.A., Chekeev, A.A., (2015), On Uniform Topology and its Applications, TWMS J. Pure Appl. Math., 6(2), pp.165-179.
- [5] Charalambous, M.G., (1975), A new covering dimension function for uniform spaces, J. London Math. Soc., (2)11, pp.137-143.
- [6] Charalambous, M.,G., (1991), Further theory and applications of covering dimension of uniform spaces, Czech. Math. J., 41(116), pp.378-394.
- [7] Chekeev, A.A., Kasymova, T.J., Chanbaeva, A.I., (2015), On Closed Mappings of Uniform Spaces, TWMS J. Pure Appl. Math., 6(1), pp.78–83.
- [8] Chekeev, A.A., (2016), Uniformities for Wallman compactifications and realcompactifications, Topology and its Applications, 201, pp.145-156.
- [9] Chigogidze, A.Ch., (1985), Relative dimensions, General Topology, Spaces of functions and dimension, Moskov. Gos. Univ., Moscow, pp.67-117 (in Russian).
- [10] Engelking, R., (1989), General Topology, Berlin: Heldermann, 626 p.
- [11] Frink, O., (1964), Compactifications and seminormal spaces, Amer. J. Math., 86, pp.602–607.
- [12] Frolik, Z., (1974), A note on metric-fine spaces, Proc. Amer. Math.Soc.,46(1), pp.111–119.
- [13] Gillman, L., Jerison, M., (1960), Rings of Continuous Functions, The Univ. Series in Higher Math., Van Nostrand, Princeton, N. J., 303 p.
- [14] Hager, A.W., (1969), On inverse-closed subalgebra of C(X), Proc. Lond. Math. Soc., 19(3), pp.233–257.
- [15] Iliadis, S.D., (2005), Universal Spaces and Mappings, North-Holland Mathematics Studies, 198, Elsevier Science B.V., Amsterdam, 559 p.
- [16] Isbell, J.R., (1958), Algebras of uniformly continuous functions, Ann. of Math., 68. pp.96-125.
- [17] Isbell, J.R., (1964), Uniform Spaces, Providence, 175 p.
- [18] Katetov, M., (1951), On real-valued functions in topologi cal spaces, Fund. Math., 38, pp. 85-91; 40(1953), pp.203-205.
- [19] Mrówka, S., (1973), β-like compactifications, Acta Math. Acad. Sci. Hungaricae, 24(3-4), pp.279–287.
- [20] Nagata, J., (1968), Modern General Topology, Amsterdam, 522 p.
- [21] Steiner, A.K., Steiner, E.F., (1970), Nest generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc., 148, pp.589–601.
- [22] Stone, M., (1937), Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41, pp.375–481
- [23] Walker, R., (1974), The Stone-Čech Compactification, Springer-Verlag, New York, Berlin, 333 p.

Asylbek Chekeev, for a photograph and biography, see TWMS J. Pure Appl. Math., V.6, N.1, 2015, p.83.

Baktiyar Rakhmankulov is a senior lecturer of Algebra, Geometry and Topology Chair of Mathematics, Informatics and Cybernetics Faculty, Kyrgyz National University named after J. Balasagyn.

Aigul Chanbaeva, for a photograph and biography, see TWMS J. Pure Appl. Math., V.6, N.1, 2015, p.83.